MACHINE LEARNING - CLASSIFICATION (LOGISTIC REGRESSION)
THE MAIN CODING CONCEPT IS SAME AS THE REGRESSION
CODE--
#logistic regression #Created_By@THE AI DATA SCIENCE import pandas as pd import matplotlib.pyplot as plt import numpy as np #import_datset dataset = pd.read_csv('Social_Network_Ads.csv') x = dataset.iloc[:, 2:4].values y= dataset.iloc[:, 4].values #spliting_deataset_into_test_and_training_data from sklearn.cross_validation import train_test_split x_train , x_test , y_train , y_test = train_test_split(x, y , test_size = 0.25 , random_state = 0) #feature_scaling from sklearn.preprocessing import StandardScaler sc_x = StandardScaler() x_train = sc_x.fit_transform(x_train) x_test = sc_x.transform(x_test) #fitting logistic regression from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(x_train , y_train) #predict test data y_pred = classifier.predict(x_test) #making the confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test , y_pred) #visualizing from matplotlib.colors import ListedColormap x_set , y_set = x_train , y_train x1 , x2 = np.meshgrid(np.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1 , step = 0.01) , np.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1 , step = 0.01)) plt.contourf(x1, x2, classifier.predict(np.array([x1.ravel(),x2.ravel()]).T).reshape(x1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(x1.min(),x1.max()) plt.ylim(x2.min(),x2.max()) for i,j in enumerate(np.unique(y_set)) : plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1], c = ListedColormap(('red','green')) (i), label = j) plt.title('logistic regression training set') plt.xlabel('age') plt.ylabel('est salary') plt.legend() plt.show() #visualizing from matplotlib.colors import ListedColormap x_set , y_set = x_test , y_test x1 , x2 = np.meshgrid(np.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1 , step = 0.01) , np.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1 , step = 0.01)) plt.contourf(x1, x2, classifier.predict(np.array([x1.ravel(),x2.ravel()]).T).reshape(x1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(x1.min(),x1.max()) plt.ylim(x2.min(),x2.max()) for i,j in enumerate(np.unique(y_set)) : plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1], c = ListedColormap(('red','green')) (i), label = j) plt.title('logistic regression test set') plt.xlabel('age') plt.ylabel('est salary') plt.legend() plt.show()STAY TUNED FOR THE NEXT ML ALGORITHM CODE SNIPPET
Post a Comment